You are viewing the site in preview mode

Skip to content

Advertisement

  • Poster presentation
  • Open Access

Accumulation of MDSC subsets in renal cell carcinoma correlates with grade and progression free survival, and is associated with intratumoral expression of IL-1β, IL-8 and CXCL5

  • 1,
  • 2,
  • 2,
  • 2,
  • 2,
  • 2,
  • 2,
  • 2 and
  • 3
Journal for ImmunoTherapy of Cancer20142 (Suppl 3) :P227

https://doi.org/10.1186/2051-1426-2-S3-P227

  • Published:

Keywords

  • Renal Cell Carcinoma
  • Progression Free Survival
  • Renal Cell Carcinoma Patient
  • Myeloid Derive Suppressor Cell
  • Limited Stage

Myeloid derived suppressor cells (MDSC, CD33+CD11b+ HLA-DR low/-) play a major role in tumor-mediated immune evasion and are composed of at least 3 subsets PMN (CD15+), monocytic (CD14+) and lineage-negative (CD15-CD14-), and each has been shown to be significantly increased in some human tumor types and to correlate with metastatic burden, clinical cancer stage and outcome. Less in known about the MDSC subsets that accumulate in tumors such as renal cell carcinoma (RCC) and the cytokines/chemokines involved in their recruitment. Flow cytometry analysis of peripheral blood mononuclear cells (PBMC, n = 20) and nephrectomy samples (n = 39, stage 1-4) showed increased levels of total MDSC in RCC patients compared to normal controls (n = 15), with PMN- and Lin- MDSC subsets dominating in the blood and tumor of RCC patients. Blood levels of total MDSC, PMN-MDSC and Lin-MDSC correlated with tumor grade (p = 0.026, p = 0.006 and p = 0.045, respectively), while blood levels of total MDSC and Lin-MDSC correlated with progression free survival (PFS) in patients with limited stage disease (n = 16, stages 1-3) (HR = 1.35, p = 0.03; HR = 1.45, p = 0.02, respectively). In the tumor, higher PMN-MDSC levels were significantly associated with decreased PFS (n = 29, HR = 1.09, p = 0.011). To assess the role of select chemokines (IL-8, CXCL5, Mip-1α, MCP-1 and Rantes) and of the pro-inflammatory cytokine IL-1β in promoting the accumulation of MDSC within the tumor, these proteins were quantitated in tumor lysates by ELISA and correlated to MDSC frequencies (Spearman correlations). We found a direct correlation between the frequency of PMN-MDSC in the parenchyma and the levels of IL-8 (p < 0.001), CXCL-5 (p < 0.001), and IL-1β (p = 0.029). Frequency of parenchymal Lin- MDSC directly correlated with levels of IL-8 (p = 0.033) and CXCL-5 (p = 0.008), but not IL-1β. In circulation, frequency of total MDSCs directly correlated with IL-1β plasma levels (p = 0.003).

To further define the role of IL-1β in MDSC accumulation within tumors, we overexpressed IL-1β in RENCA and CT26 tumors and compared them to untransfected tumors. Overexpression of IL-1β resulted in enhanced tumor growth and increased frequency of intratumor PMN-MDSC (10.3X in RENCA and 26X in CT26), with a modest increase in intratumor M-MDSC. A large fraction of tumor infiltrating PMN-MDSC expressed CXCR2 (84% in RENCA and 55% in CT26), which is associated with a significant increase in expression of CXCR2 ligands (KC, CXCL5, and MIP2). These results support the idea that IL-1β-mediated induction of select chemokines promotes the accumulation of MDSC, particularly PMN-MDSC, within tumors, resulting in enhanced immune suppression and angiogenesis.

Authors’ Affiliations

(1)
Department of Hematology-Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
(2)
Department of Solid Tumor Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
(3)
Department of Immunology, Cleveland Clinic, Cleveland, OH, USA

Copyright

© Najjar et al.; licensee BioMed Central Ltd. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Advertisement