Skip to content

Advertisement

  • Poster presentation
  • Open Access

Modulation of anti-tumor lymphocyte function by neurotransmitter glutamate

  • Thomas Hodo1,
  • Menaka Thounaojam1 and
  • Anil Shanker2
Journal for ImmunoTherapy of Cancer20142(Suppl 3):P38

https://doi.org/10.1186/2051-1426-2-S3-P38

Published: 6 November 2014

Keywords

Multiple SclerosisGlutamateGlutamate ReceptorReceptor AMPANeurotransmitter Glutamate

Most research to date pertaining to neural influence on immune response involves immunosuppression via the anti-inflammatory pathway. However, there is emerging evidence indicating that neurotransmitters have the ability to promote immune activation. We are investigating whether neurotransmitters can modulate and/or activate T cell function in situations where immunosuppression is prevalent such as in the tumor microenvironment. Published work suggests that glutamate, serotonin, dopamine, and Substance P trigger immune responses such as cytokine secretion, integrin expression, and chemotaxis. We saw that both CD4 and CD8 T cells express high surface protein levels of glutamate receptor AMPA iGluR3, which is able to import Ca2+ and Na+. We also found that mGluR1 is significantly upregulated on lymphocytes upon activation. Our data further show that T cells in the tumor-draining LN and tumor-infiltrating lymphocytes have upregulated expression of iGluR3 and mGluR1. Treatment with glutamate or its receptor agonist augmented T cell proliferation following CD3-CD28-mediated TCR stimulation. Thus, modulation of glutamate receptor signaling can be useful for enhancing anti-tumor T cell immunity such as inhibition of AICD, enhancement of proliferation, and increased cytokine production [1, 2]. Indeed, overactivation of lymphocytes in multiple sclerosis is closely tied to the overexpression of AMPA GluR3 on T cells [3]. Experiments are under way to dissect in an adoptive transfer set up whether glutamate-modulated immune effector function involves specific activation of anti-tumor lymphocytes to elicit cytolytic response that is needed to cause tumor cell death. Our findings will help identify novel neuro-immune modulators that may serve to enhance anti-tumor T cell response.

Authors’ Affiliations

(1)
Meharry Medical College School of Medicine, Nashville, United States
(2)
Meharry Medical College School of Medicine / Vanderbilt-Ingram Cancer Center, Nashville, United States

References

  1. Chiocchetti A, Miglio G, Mesturini R, Varsaldi F, Mocellin M, Orilieri E, Dianzani C, Fantozzi R, Dianzani U, Lombardi G: Group I mGlu receptor stimulation inhibits activation-induced cell death of human T lymphocytes. British journal of pharmacology. 2006, 148: 760-768.PubMed CentralView ArticlePubMedGoogle Scholar
  2. Pacheco R, Oliva H, Martinez-Navio JM, Climent N, Ciruela F, Gatell JM, Gallart T, Mallol J, Lluis C, Franco R: Glutamate released by dendritic cells as a novel modulator of T cell activation. J Immunol. 2006, 177: 6695-6704. 10.4049/jimmunol.177.10.6695.View ArticlePubMedGoogle Scholar
  3. Sarchielli P, Di Filippo M, Candeliere A, Chiasserini D, Mattioni A, Tenaglia S, Bonucci M, Calabresi P: Expression of ionotropic glutamate receptor GLUR3 and effects of glutamate on MBP- and MOG-specific lymphocyte activation and chemotactic migration in multiple sclerosis patients. Journal of neuroimmunology. 2007, 188: 146-158. 10.1016/j.jneuroim.2007.05.021.View ArticlePubMedGoogle Scholar

Copyright

© Hodo et al.; licensee BioMed Central Ltd. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Advertisement