You are viewing the site in preview mode

Skip to main content


Wnt pathway activation functionally reprograms human antigen-specific T cells

Polyfunctionality is a hallmark of protective immunity, yet the molecular mechanisms governing polyfunctional T cells are poorly understood. After TCR activation, naïve CD8+ T cells undergo proliferation and differentiation, which lead to effector functions and memory subset development. However only a portion of activated T cells develop into memory CD8+ T cells and with chronic stimulation become terminally differentiated and exhausted CD8+ T cells, as defined by CCR7-/CD45RA+, and functionally impair effective immune responses [1]. We therefore probed the ability to reverse terminally differentiated antigen-specific cells using pharmacological agents. Stimulating human memory CD8+ T cells with cognate TCR stimulation in the presence of Wnt agonist enhances polyfunctionality and stemness. Both M1-influenza+ and CMV+ CD8+ T cell responses were reprogrammed and revealed sustained effects from initial Wnt pathway activation in vitro. Future work with cancer antigens and reprogramming of differentiated CD8+ responses could lead to improved in vitro culture conditions for adoptive immunotherapy.


  1. 1.

    Seder R, Darrah P, Roederer M: T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol. 2008, 8: 247-258. 10.1038/nri2274.

Download references

Author information

Correspondence to Catherine Bessell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark


  • Effector Function
  • Protective Immunity
  • Human Memory
  • Cancer Antigen
  • Adoptive Immunotherapy